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Abstract� We propose a generic� domain
independent local search method
called adaptive search for solving Constraint Satisfaction Problems �CSP�

We design a new heuristics that takes advantage of the structure of the
problem in terms of constraints and variables and can guide the search
more precisely than a global cost function to optimize �such as for in

stance the number of violated constraints�
 We also use an adaptive mem

ory in the spirit of Tabu Search in order to prevent stagnation in local
minima and loops
 This method is generic� can apply to a large class of
constraints �e
g
 linear and non
linear arithmetic constraints� symbolic
constraints� etc� and naturally copes with over
constrained problems

Preliminary results on some classical CSP problems show very encour

aging performances


� Introduction

Heuristic �i�e� non�complete� methods have been used in Combinatorial Opti�
mization for �nding optimal or near�optimal solutions since a few decades� origi�
nating with the pioneering work of Lin on the Traveling Salesman Problem ��	
�
In the last few years� the interest for the family of Local Search methods for
solving large combinatorial problems has been revived� and they have attracted
much attention from both the Operations Research and the Arti�cial Intelligence
communities� see for instance the collected papers in ��
 and ��	
� the textbook
���
 for a general introduction� or �for the French speaking reader� ��
 for a
good survey� Although local search techniques have been associated with basic
hill�climbing or greedy algorithms� this term now encompasses a larger class of
more complex methods� the most well�known instances being simulated anneal�
ing� Tabu search and genetic algorithms� usually referred as 
meta�heuristics��
They work by iterative improvement over an initial state and are thus anytime
algorithms well�suited to reactive environments� Consider an optimization prob�
lem with cost function which makes it possible to evaluate the quality of a given
con�guration �assignment of variables to current values� and a transition func�
tion that de�nes for each con�guration a set of �neighbors�� The basic algorithm
consists in starting from a random con�guration� explore the neighborhood� se�
lect an adequate neighbor and then move to the best candidate� This process



will continue until some satisfactory solution is found� To avoid being trapped in
local optima� adequate mechanisms should be introduced� such as the adaptive
memory of Tabu search� the cooling schedule of simulated annealing or simi�
lar stochastic mechanisms� Very good results have been achieved by dedicated
and �nely tuned local search methods for many problems such as the Traveling
Salesman Problem� scheduling� vehicle routing� cutting stock� etc� Indeed� such
techniques are now the most promising approaches for dealing with very large
search spaces� when the problem is too big to be solved by complete methods
such as constraint solving techniques�

In the last years� the application of local search techniques for constraint
solving started to raise some interest in the CSP community� Localizer ���� ��

proposed a general language to state di�erent kinds of local search heuristics
and applied it to both OR and CSP problems� and ���
 integrated a constraint
solving component into a local search method for using constraint propagation in
order to reduce the size of the neighborhoods� GENET ��
 was based on the Min�
Con�ict ���
 heuristics� while ���
 proposed a Tabu�based local search method
as a general problem solver but this approach required a binary encoding of
constraints and was limited to linear inequalities� Very recently� ��
 developed
another Tabu�based local search method for constraint solving� This method�
developed independently of our adaptive search approach� also used so�called

penalties� on constraints that are similar to the notion of 
constraint errors�
that will be described later� It is worth noticing that the �rst use of such a
concept is to be found in ��
�

We propose a new heuristic method called Adaptive Search for solving Con�
straint Satisfaction Problem� Our method can be seen as belonging to the GSAT
���
� Walksat ���
 and Wsat�OIP� ���
 family of local search methods� But the
key idea of our approach is to take into account the structure of the problem
given by the CSP description� and to use in particular variable�based informa�
tion to design general meta�heuristics� This makes it possible to naturally cope
with heterogeneous problem descriptions� closer to real�life application that pure
regular academic problems�

Preliminary results on classical CSP benchmarks such as the simple 
N�
queens� problem or the much harder 
magic square� or 
all�intervals� problems
show that the adaptive search method performs very well w�r�t� traditional con�
straint solving systems�

� Adaptive Search

The input of the method is a problem in CSP format� that is� a set of variables
with their ��nite� domains of possible values and a set of constraints over these
variables� A constraint is simply a logical relation between several unknowns�
these unknowns being variables that should take values in some speci�c domain
of interest� A constraint thus restricts the degrees of freedom �possible values�
the unknowns can take� it represents some partial information relating the ob�
jects of interest� Constraint Solving and Programming has proved to be very



successful for Problem Solving and Combinatorial Optimization applications� by
combining the declarativity of a high�level language with the e�ciency of spe�
cialized algorithms for constraint solving� borrowing sometimes techniques from
Operations Research and Numerical Analysis ���
� Several e�cient constraint
solving systems for �nite domain constraints now exists� such as ILOG Solver
���
 on the commercial side or clp�FD���
 and GNU�Prolog ��
 on the acad�
emic�freeware side� Although we will completely depart in adaptive search from
the classical constraint solving techniques �i�e� Arc�Consistency and its exten�
sions�� we will take advantage of the formulation of a problem as a CSP� Such
representation indeed makes it possible to structure the problem in terms of
variables and constraints and to analyze the current con�guration �assignment
of variables to values in their domains� more carefully than a global cost function
to be optimized� e�g� the number of constraints that are not satis�ed� Accurate
information can be collected by inspecting constraints �that typically involve
only a subset of all the problem variables� and combining this information on
variables �that typically appear in only a subset of all the problem constraints��

Our method is not limited to any speci�c type of constraint� e�g� linear con�
straints as classical linear programming or ���
� However we need� for each con�
straint� an error function that will give an indication on how much the constraint
is violated� Consider a n�ary constraint C�X�� � � � � Xn� and domains D�� � � � � Dn

for variables fX�� � � � � Xng� An error function fc associated to the constraint C
is simply a real�valued function from D� � � � � �Dn such that fC�X�� � � � � Xn�
has value zero if C�X�� � � � � Xn� is satis�ed� We do not impose the value of fC
to be di�erent from zero when the constraint is not satis�ed� and this will in�
deed not be the case in some of the examples we will describe below� The error
function will in fact be used as a heuristic value to represent the 
degree of sat�
isfaction� of a constraint and thus to check how much a constraint is violated
by a given tuple� For instance the error function associated to an arithmetic
constraint jX � Y j � C will be max�	� jX � Y j � C�� Adaptive search relies
on iterative repair� based on variables and constraint errors information� seeking
to reduce the error on the worse variable so far� The basic idea is to compute
the error function of each constraint� then combine for each variable the errors
of all constraints in which it appears� therefore projecting constraint errors on
involved variables� Finally� the variable with the maximal error will be chosen
as a �culprit� and thus its value will be modi�ed� In this second step we use
the well�known min�con�ict heuristics ���
 and select the value in the variable
domain that has the best error immediate value� that is� the value for which the
total error in the next con�guration is minimal� This is similar to the steepest
ascent heuristics for traditionnal hillclimbing�

In order to prevent being trapped in local minima� the adaptive search
method also includes an adaptive memory as in Tabu Search � each variable
leading to a local minimum is marked and cannot be chosen for the few next
iterations� A local minimum is a con�guration for which none of the neighbor im�
prove the current con�guration� This corresponds in adaptive search to a variable
whose current value is better than all alternative values in its domain� It is worth



noticing that conversely to most Tabu�based methods �e�g� ��
 or ��
 for a CSP�
oriented framework� we mark variables and not couples � variable� value ��
and that we do not systematically mark variables when chosen in the current
iteration but only when they lead to a local minimum� Observe however that�
as we use the min�con�ict heuristics� the method will never choose the same
variable twice in a row�

It is worth noticing that the adaptive search method is thus a generic frame�
work parametrized by three components �

� A family of error functions for constraints �one for each type of constraint�
� An operation to combine for a variable the errors of all constraints in which
it appears

� A cost function for a evaluating con�gurations

In general the last component can be derived from the �rst two one� Also�
we could require the combination operation to be associative and commutative�

� General Algorithm

Let us �rst detail the basic loop of the adaptive search algorithm� and then
present some extra control parameters to tune the search process�

Input �

Problem given in CSP form �
� a set of variables V � fV�� V�� � � � � Vng with associated domains of values
� a set of constraints C � fC�� C�� � � � � Ckg with associated error functions
� a combination function to project constraint errors on variables
� a �positive� cost function to minimize

Output �

a sequence of moves �modi�cation of the value of one of the variables� that
will lead to a solution of the CSP �con�guration where all constraints are
satis�ed� if the CSP is satis�ed or to a partial solution of minimal cost
otherwise�

Algorithm �

Start from a random assignment of variables in V
Repeat

�� Compute errors of all constraints in C and combine errors on each
variable by considering for a given variable only the constraints on
which it appears�

�� select the variable X �not marked as Tabu� with highest error and
evaluate costs of possible moves from X

�� if no improving move exists
then mark X tabu for a given number of iterations
else select the best move �min�con�ict� and change the value of X
accordingly

until a solution is found or a maximal number of iterations is reached



Some extra parameters can be introduced in the above framework in order
to control the search� in particular the handling of �partial� restarts� One �rst
has to precise� for a given problem� the Tabu tenure of each variable� that is�
the number of iteration a variable should not be modi�ed once it is marked due
to local minima� Thus� in order to avoid being trapped with a large number of
Tabu variables and therefore no possible diversi�cation� we decide to randomly
reset a certain amount of variables when a given number of variables are Tabu
at the same time� We thereafter introduce two other parameters � the reset limit�
i�e� the number of simultaneous Tabu variables to reach in order to randomly
reset a certain ratio of variables �reset percentage�� Finally� as in all local search
methods� we parametrize the algorithm with a maximal number of iterations
�max iterations�� This could be used to perform early restart� as advocated by
���
� Such a loop will be executed at most max restart times before the algorithm
stops�

This method� although very simple� is nevertheless very e�cient to solve
complex combinatorial problems such as classical CSPs� as we will see in the
next section� It is also worth noticing that this method has several sources of
stochasticity� First� in the core algorithm� both in the selection of the variable
and in the selection of the value for breaking ties between equivalent choices �e�g�
choosing between two variables that have the same value for the combination
of their respective constraint errors�� Second� in the extra control parameters
that have just been introduced� to be tuned by the user for each application� For
instance if the reset limit �number of simultaneous tabu variables� is very low�
the algorithm with restart very often� enhancing thus the stochastic aspects of
the method� but on the other hand if the reset limit is too high� the method might
show some trashing behavior and have di�culties in escaping local minima� Last
but not least� when performing a restart� the algorithm will randomly modify the
values of a given percentage of randomly chosen variables �the reset percentage��
Thus a reset percentage of �		 � will amount to restart each time from scratch�

� Examples

Let us now detail how the adaptive search method performs on some classical
CSP examples� We have tried to choose benchmarks on which other constraint
solving methods have been applied in order to obtain comparison data� but is
it worth noticing that all these benchmarks have satis�able instances� For each
benchmark we give a brief description of the problem and its modeling in the
adaptive search approach� Then� we present performance data averaged on �	
executions� including�

� instance number �i�e� problem size�
� average� best and worst CPU time
� total number of iterations �within a single run� on average�
� number of local minima reached �within a single run� on average�
� number of performed swaps �within a single run� on average�



� number of resets �within a single run� on average�

Then we compare those performance results �essentially the execution time�
with other methods among the most well�known constraint solving techniques�
constraint programming systems ��� ��
� general local search system ���� ��
� Ant�
Colony Optimization ���
� We have thus favored academic benchmarks over ran�
domly generated problems in order to compare to literature data�

Obviously� this comparison is preliminary and not complete but it should
give the reader a rough idea of the potential of the adaptive search approach�
We intend to make a more exhaustive comparison in the near future�

��� Magic to the square

The magic square puzzle consists in placing on a NxN square all the numbers
in f�� �� � � � � N�g such as the sum of the numbers in all rows� columns and the
two diagonal are the same� It can therefore be modeled in CSP by considering
N� variables with initial domains f�� �� � � � � N�g together with linear equation
constraints and a global all di�erent constraint stating that all variables should
have a di�erent value� The constant value that should be the sum of all rows�
columns and the two diagonals can be easily computed to be N�N� � �����

The instance of adaptive search for this problem is de�ned as follows� The
error function of an equation X� � X� � � � � � Xk � b is de�ned as the value
of X� �X� � � � � �Xk � b� The combination operation is the absolute value of
the sum of errors �and not the sum of the absolute values� which would be less
informative � errors with the same sign should add up as they lead to compatible
modi�cations of the variable� but not errors of opposite signs�� The overall cost
function is the addition of absolute values of the errors of all constraints The
method will start by a random assignment of all N� numbers in f�� �� � � � � N�g
on the cells of the NxN square and consider as possible moves all swaps between
two values�

The method can be best described by the following example which depicts
information computed on a �x� square�

Values and Projections Costs of next
Constraint errors on variables con�gurations

��
�� � � �� �
�� � � �� 	
�	 � � � ��	
� �� � �� �
� �� �� � ��

� � � �
� � �� �
� �� �� �
� � � �

�� �� �� ��

�� �� �� ��
�� �� �� ��
�� �� �� ��

The table on the left shows the con�guration of the magic square at some
iteration �each variable corresponds to a cell of the magic square�� Numbers on
the right of rows and diagonals� and below lines� denote the errors of the corre�
sponding constraints� The total cost is then computed as the sum of the absolutes



values of those constraints errors and is equal to ��� The table immediately on
the right shows the combination of constraint errors on each variable� The cell
����� with value � �in bold font on the left table� has maximal error ���� and is
thus selected for swapping� We should now score all possible swaps with other
numbers in the square� this is depicted in the table on the right� containing the
cost value of the overall con�guration for each swap� The cell ����� with value ��
�in italic� gives the best next con�guration �with cost ��� and is thus selected
to perform a move� The cost of the next con�guration will therefore be ���

problem time �sec� time �sec� time �sec� nb nb local nb nb
instance avg of �� best worst iterations minima swaps resets
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Table �� magic square results
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Table � details the performances of this algorithm on bigger instances� For a
problem of size NxN the following settings are used� Tabu tenure is equal to N��
and �	 � of the variables are reset when N��� variables are Tabu� The programs
were executed on a PentiumIII ��� MHz with ��� Mb of memory running Linux
RedHat ��	�

Figure � depicts how CPU times evolve w�r�t� problem size� the dotted line
represents the best execution time� the dashed line the worst one and the solid
line the average one�

size Localizer Adaptive

��x�� ��
�� �
��
��x�� 	�	
� 	
�
	�x	� ���� ��
��
��x�� ���	 ��
��
��x�� �	��� ��	
�

Table �� Comparison with Localizer

Constraint programming systems such as GNU�Prolog or ILOG Solver per�
form poorly on this benchmark and cannot solve instances greater than �	x�	�
We can nevertheless compare with another local search method� this benchmark
has been attacked by the Localizer system with a Tabu�like meta�heuristics� Lo�
calizer ������
 is a general framework and language for expressing local search
strategies which are then compiled into C�� code� Table � compares the CPU
times for both systems �in seconds�� Timings for Localizer come from ���
 and
have been measured on a PentiumIII��		 and thus on a machine similar to
ours �PentiumIII������ but it is worth noticing however that the method used
in Localizer consists in exploring at each iteration step the whole single�value
exchange neighborhood �of size n��� Our results compare very favorably with
those obtained with the Localizer system� as the adaptive search is two orders
of magnitude faster� Moreover its performances could certainly be improved by
careful tuning of various parameters �global cost function� Tabu tenure� reset
level and percentage of reset variables� ���� in order to make the method truly
adaptive indeed���

��� God saves the queens

This puzzle consists in placing N queens on a NxN chessboard so that no two
queens attach each other� It can be modeled by N variables �that is� one for
each queen� with domains f�� �� � � � � Ng �that is� considering that each queen
should be placed on a di�erent row� and ��N�N����� disequation constraints
stating that no pair of queens can ever be on the same column� up�diagonal or
down�diagonal �

��i� j� � f�� �� � � � � Ng�� s�t� i �� j � Qi �� Qj � Qi � i �� Qj � j� Qi � i �� Qj � j



Observe that this problem can also be encoded with three all di�erent global
constraints�

We can de�ne the error function for disequation as follows� in the most simple
way � 	 if the constraint is satis�ed and � if the constraint is violated� The
combination operation on variables is simply the addition� and the overall cost
function is the sum of the costs of all constraints�

problem time �sec� time �sec� time �sec� nb nb local nb nb
instance avg of �� best worst iterations minima swaps resets
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Table �� N
Queens results

Table � details the performances of this algorithm on large instances� For a
problem of size NxN the following settings are used� Tabu tenure is equal to �
and �	 � of the variables are reset when N�� variables are Tabu� The programs
were executed on a PentiumIII ��� MHz with ��� Mb of memory running Linux
RedHat ��	�

Figure � depicts how CPU times evolve w�r�t� problem size� the dotted line
represents the best execution time� the dashed line the worst one and the solid
line the average one�

Surprisingly the behavior of the adaptive search is almost linear and the
variance between di�erent executions is quasi inexistent� Let us now compare
with a constraint programming system �ILOG solver� and an ant colony opti�
mization method �Ant�P solver�� both timings �in seconds� are taken from ���

and divided by a factor � corresponding to the SPECint �� ratio between the
processors� Timings for Localizer come again from ���
 and have been measured
on a PentiumIII��		 and thus on a machine slighty more performant than ours�
Table � clearly show that adaptive search is much more performant on this
benchmark� which might not be very representative of real�life applications but
is a not�to�be�missed CSP favorite���
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Table �� Comparison with ILOG Solver� Ant
P and Localizer



��� All	Intervals Series

Although looking like a pure combinatorial search problem� this benchmark is
in fact a well�known exercise in music composition ���
� The idea is to com�
pose a sequence of N notes such that all notes are di�erent and tonal intervals
between consecutive notes are also distinct� This problem can be modeled as a
permutation of the N �rst integers such that the absolute di�erence between two
consecutive pairs of numbers are all di�erent�

This problem is modeled by considering N variables fV�� � � � � VNg that repre�
sent the notes� whose values will represent a permutation of f	� � � � � N��g� There
is only one constraint to encode stating that absolute values between each pair
of consecutive variables are all di�erent� Possible moves from one con�guration
consist in all possible swaps between the values of two variables� As all variables
appear symmetrically in this constraint there is no need to project errors on
each variable �all variable errors would be equal� and we just have to compute
the total cost for each con�guration� One way to do this is to �rst compute the
distance between � consecutive variables�

Di � jVi�� � Vij for i � ��� n� �


Then one has to de�ne the number of occurrence of each distance value�

Occj � �N��
i�� �if Di � j then � else 	�

Obviously� the all di�erent constraint on the distance values is satis�ed i� for all
j � ��� n� �
� Occj � �� It is thus interesting to focus on the values j such that
Occj � 	 representing the 
missing values� for the distances� We will moreover
consider that it is harder to place bigger distances and thus introduce a bias in
the total cost as follows�

cost � �n��
j�� �if Occj � 	 then j else 	�

Obviously a solution is found when cost � 	�
Table � details the performances of this algorithm on several instances� For

a problem of size N the following settings are used� Tabu tenure is equal to
N��	 and �	 � of the variables are reset when � variable is Tabu� The programs
were executed on a PentiumIII ��� MHz with ��� Mb of memory running Linux
RedHat ��	�

Figure � depicts how CPU times evolves w�r�t� problem size� the dotted line
represents the best execution time� the dashed line the worst one and the solid
line the average one�

Let us now compare with a constraint programming system �ILOG solver�
and an ant colony optimization method �Ant�P solver�� both timings are taken
from ���
 and divided by a factor � corresponding to the SPECint �� ratio be�
tween the processors� ILOG Solver might take advantage of global constraints to
model this problem� but nevertheless perform poorly and can only �nd �without
any backtracking� the trivial solution �

� 	� N � �� �� N � �� �� N � �� � � � �



problem time �sec� time �sec� time �sec� nb nb local nb nb
instance avg of �� best worst iterations minima swaps resets
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Table �� All
intervals series result
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For instances greater than ��� no other solution can be found in reasonable time�
���
 reported that the execution times where greater than a full hour of CPU
time �this is depicted by a � symbol in our table��

size ILOG Ant
P Adaptive
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�� �
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��

Table �� Comparison with ILOG Solver and Ant
P

Adaptive search is therefore more than an order of magnitude faster than
Ant�Colony Optimization on this problem �see table �� where timings are given
in seconds��

��� Number Partitioning

This problem consists in �nding a partition of numbers f�� � � � � Ng into two
groups A and B such that�

� A and B have the same cardinality
� sum of numbers in A � sum of numbers in B
� sum of squares of numbers in A � sum of squares of numbers in B

This problem admits a solution i� N is a multiple of � and is modeled as
follows� Each con�guration consists in the partition of the values Vi � f�� � � � � Ng
in two subsets of equal size� There are two constraints �

�n
i��Vi � N�N � ����

�n
i��V

�

i � N�N � ����N � ����

The possible moves from one con�guration consist in all possible swaps exchang�
ing one value in the �rst subset with another one in the second subset� The errors
on the equality constraints are computed as previously in the magic square prob�
lem� In this problem again� as in the previous all�intervals example� all variables
play the same role and there is no need to project errors on variables� The total
cost of a con�guration can be obtained as the sum of the absolute values of all
constraint errors� Obviously again� a solution is found when the total cost is
equal to zero�

Table � details the performances of this algorithm on several instances� For
a problem of size N the following settings are used� Tabu tenure is equal to �
and � � of the variables are reset when one variable is Tabu� The programs
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Table �� number partitioning results

were executed on a PentiumIII ��� MHz with ��� Mb of memory running Linux
RedHat ��	� Figure � depicts how CPU times evolve w�r�t� problem size� the
dotted line represents the best execution time� the dashed line the worst one
and the solid line the average one� Constraint Programming systems such as
GNU Prolog cannot solve this problem for instances larger than ����

��
 The Alpha cipher

This problem has been posted on the newsgroup rec�puzzles a few years ago� it
consists in solving a system of �	 simultaneous equations over the integers as fol�
lows� The numbers f�� � � � � ��g have to be assigned to the letters of the alphabet�
The numbers beside each word are the total of the values assigned to the letters
in the word� e�g for LYRE L�Y�R�E might equal �����	 and �� respectively or
any other combination that add up to ��� The problem consists in �nding the
value of each letter satisfying the following equations�

BALLET � �� GLEE � �� POLKA � �� SONG � ��
CELLO � �� JAZZ � �� QUARTET � �	 SOPRANO � ��

CONCERT � �� LYRE � �� SAXOPHONE � ��� THEME � ��
FLUTE � �	 OBOE � �� SCALE � �� VIOLIN � �		
FUGUE � �	 OPERA � �� SOLO � �� WALTZ � ��

This is obviously modeled by a set of �	 linear equations on �� variables�
The errors on the linear constraints are computed as previously in the magic
square example� The projection on variables is the absolute value of the sum of
each constraint error multiplied by the coe�cient of the variable in that �linear�
constraint� The total cost is� as usual� the sum of the absolute values of constraint
errors�

Local search is certainly not the best way to solve such a �linear� problem�
Nevertheless it could be interesting to see the performances of adaptive search
on such a benchmark in order to observe the versatility of this method� Table �
details the performances of this algorithm� The following settings are used� Tabu
tenure is equal to � and � � of the variables are reset when � variables are Tabu�
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Fig� �� number partitioning graph

The programs were executed on a PentiumIII ��� MHz with ��� Mb of memory
running Linux RedHat ��	�

problem time �sec� time �sec� time �sec� nb nb local nb nb
instance avg of �� best worst iterations minima swaps resets

alpha
�� �
�� �
�	 �
�� ���� 	��� ���� ���

Table 	� alpha cipher result

Constraint Programming systems such as GNU Prolog can solve this problem
in 	��� seconds with standard labeling and in 	�	� seconds with the �rst�fail
labeling heuristics� Surprisingly� adaptive search is not so bad on this example�
which is clearly out of the scope of its main application domain�

� Conclusion and Perspectives

We have presented a new heuristic method called adaptive search for solving Con�
straint Satisfaction Problems by local search� This method is generic� domain�
independent� and uses the structure of the problem in terms of constraints and



variables to guide the search� It can apply to a large class of constraints �e�g�
linear and non�linear arithmetic constraints� symbolic constraints� etc� and natu�
rally copes with over�constrained problems� Preliminary results on some classical
CSP problems show very encouraging results� about one or two orders of magni�
tude faster than competing methods on large benchmarks� Nevertheless� further
testing is obviously needed to assess these results�

It is also worth noticing that the current method does not perform any plan�
ning� as it only computes the move for the next time step out of all possible
current moves� It only performs a move if it immediately improves the overall
cost of the con�guration� or it performs a random move to escape a local mini�
mum� A simple extension would be to allow some limited planning capability by
considering not only the immediate neighbors �i�e� nodes at distance �� but all
con�gurations on paths up to some prede�ned distance �e�g� all nodes within at
distance less than or equal to some k�� and then choose to move to the neighbor
in the direction of the most promising node� in the spirit of variable�depth search
���
 or limited discrepancy search ��
� We plan to include such an extension in
our model and evaluate its impact� Further work is needed to assess the method�
and we plan to develop a more complete performance evaluation� in particular
concerning the robustness of the method� and to better investigate the in�u�
ence of stochastic aspects and parameter tuning of the method� Future work will
include the development of dynamic� self�tuning algorithms�
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